Parallel Singular Value Decomposition via the Polar Decomposition

نویسندگان

  • N. J. Higham
  • Nicholas J. Higham
  • Pythagoras Papadimitriou
چکیده

A new method is described for computing the singular value decomposition (SVD). It begins by computing the polar decomposition and then computes the spectral decomposition of the Hermitian polar factor. The method is particularly attractive for shared memory parallel computers with a relatively small number of processors, because the polar decomposition can be computed efficiently on such machines using an iterative method developed recently by the authors. This iterative polar decomposition method requires only matrix multiplication and matrix inversion kernels for its implementation and is designed for full rank matrices; thus the proposed SVD method is intended for matrices that are not too close to being rank-deficient. On the Kendall Square KSR1 virtual shared memory computer the new method is up to six times faster than a parallelized version of the LAPACK SVD routine, depending on the condition number of the matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

Using Zolotarev’s Rational Approximation for Computing the Polar, Symmetric Eigenvalue, and Singular Value Decompositions

The polar decomposition A = UpH finds many uses in applications, and it is a fundamental tool for computing the symmetric eigenvalue decomposition and the singular value decomposition via a spectral divide-and-conquer process. Conventional algorithms for these decompositions are suboptimal in view of recent trends in computer architectures, which require minimizing communication together with a...

متن کامل

Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations

  In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems    

متن کامل

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

Finding the polar decomposition of a matrix by an efficient iterative method

Theobjective in this paper to study and present a new iterative method possessing high convergence order for calculating the polar decompostion of a matrix. To do this, it is shown that the new scheme is convergent and has high convergence. The analytical results are upheld via numerical simulations and comparisons.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993